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SUMMARY

In the past, the analyses of floating ice plates subjected to static or
dynamic loads were based on the theory of a thin homogeneous plate, although
in actual floating ice plates Young's modulus may vary strongly with depth,
Recently, A. Assur concluded, on the basis of a heuristic argument, that the
solutions obtained for homogeneous plates may be used for floating ice plates,
if a modified flexural rigidity is used. The purpose of the present paper is
to study this question, by establishing a mathematically consistent formulation
for the dynamic plate equation wutilizing Hamilton's Principle in conjunction
with the three dimensional theory of elasticity. It was found that for a
variable Young's modulus and a constant Poisson's ratio the resulting formu-
lations for plates and beams are the same as those for the corresponding
homogeneous problems, if a modified flexural rigidity is used; thus confirming
Assur's conclusion. It is shown that the corresponding stress distribution is not
linear and that the formula ¢ = Mzo/I used by a number of investigators for the
determination of failure stresses from tests on floating ice beams, is not

applicable., A correct formula is derived and its use discussed.

*) This research was partially supported by National Aeronautics and Space
Administration grant no, NGR-33-016-067. Parts of the presented results
are contained in a dissertation to be submitted by W, T. Palmer, to
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INTRODUCTION
The first analysis of a floating ice plate is due to H Hertz [17.
This analysis, published in 1884, deals with an infinite plate subjected to
a lateral concentrated force, and is based on the differential equation of
the homogeneous elastic plate
DV¥w + kw = q Q)
In above equation, w(x,y) is the deflection, q(x,y) is the lateral load,

D is the flexural rigidity, k is the specific weight of the liquid, and

o > e
Ve E T IESE T oA

A large number of solutions of equ., (1) for circular plates are pre-
sented in a book by F. Schleicher [2] published in 1926. S. Bernstein [ 3],
in 1929, discussed the stresses and deformations of a floating ice plate,
by comparing analytical results based on equ. (1) with test data. He found

that for loads of short duration the ice plate response was elastic, A

number of problems solved by-H.M. Westergaard in connection with stresses

in concrete pavements are also based on equ. (1). These and related problems

are discussed in the book by S. Timoshenko and S. Woinowsky-Krieger [47.
Additional solutions of equ. (1) are contained in References [5-81. Very

recent discussions of floating ice plates by H. Brunk [ 9] and 0. Mahrenholtz [10]
are also based on equ. (1).

A dynamic version of equ. (1) is (see Fig. 1)
Dv4w+p+m%2"—:¥,=q 2)

where p(x,y,t) is the dynamic pressure which the liquid base exerts upon the
bottom surface of the floating plate, m is the mass of the plate per unit area,
and q(x,y,t) represents the static intensity as well as the inertia of the

load. Equ. (2) was used by a number of investigators to analyze the response



of floating ice plates subjected to dynamic loads, A large number of these
results are presented and discussed in the books by W.M. Ewing, W.S. Jardetzky
and F. Press [11] and by D.E. Kheishin [12]. Very recent investigations
of floating ice plates, which are also based on equ. (2), Qere published
by D.E. Nevel [13], [14], H. Reissman [15], and P.F. Sgbodash and I. G.
Filippov [16]. |

In an actual floating ice plate the temperature varies throughout the
thickness. Namely, it is about +32°F (freezing temperature) at the bottom
surface, which rests on the water, and usually much lower at the upper
surface, which is in contact with the outside air. Because of this temper-
ature gradient and the éensitivity of ice properties near the freezing
temperature, Young's modulus E varies substantially throughout'the plate
thickness. The corresponding variation of Poisson;s ratio v appears to be
very small [17]. 1In 1966, A. Assur [18], discussing this problem, proposed
a correction of the classical plate equation (1), assuming that v is constant
but E varies with depth. Using a heuristic argument, Assur concluded that the
solutions of (L) remain the same, except that D = Ei /[12(1-\7)] has to be
replaced by a different value. 1Identical results were obtained, independently,
by M. Newman and M. Férray [19] while discussing the effect of aerodynamic
heating on élastic plates. Neither of these papers discussed the boundary
conditions to be used, which affect the solution of a particular problem,

In view of the novelty of the assumption that in the plate E varies
with depth; there is a need, at first, to establish a.mathematically con-
sistent formulation. Namely, to establish the proper differential equation-
and the corresponding boundary conditions for the analysis of floating ice
plates which respond elastically. This is also necessary in order to de-

termine if all solutions obtained for the homogeneous plate are applicable



to floating ice plate problems just by changing the flexural rigidity of

the plate, This and related topics are studied in the following.

THE FORMULATION OF THE FLOATING ICE PLATE WITH E(z)

Consider a floating ice plate subjected to a lateral load q(x,y,t) as
shown in Fig. 1. We denote by p(x,y,t) the pressure the liquid exerts upon
the plate due to q.

In order to insure a mathematically consistent formuLation, we utilize

Hamilton's Principle for elastic bodies [ 20]

5
5 J (U - W - K)t = 0 (3)
t
o
where U is the elastic strain energy stored in the plate, W is work po-
tential of the outside forces q and p, and K is the kinetic energy of the
pla te,
In the following we analyze the problem within the frame work of the

linear bending theory of plates.

The elastic strain energy of the plate is determined from the general

expression
1 f
Uv== C e +0 e +0 e +o0. e +to e +0o_e )Av %)
2 JJd XX XX vy vy zZ ZZ Xy Xy XZ Xz yz yz
\

where the integration extends over the undeformed volume of the plate, V.
Denoting by (u,v,w) the components of the displacement vector of any point

(x,v,z) of the plate, it follows that

€ = u, € =€ =u, + v,
XX X Xy VX y p:d
€ = v, € = ¢ =u, +w, (5)
yy y Xz zZX z X
€ = W, € = € =v, +w,
zz z yz zy z y

where ( ),X = 3( )/dx, etec.



'For thin plates in bending it is reasonable to assume that

<< H << 0O 6
Cz2 O%x ° %zz vy ®)

Hence O, is negligible compared to O x or Oyy'
Because the plate under consideration is relatively thin and the
expected strains relatively small, it is assumed that the displacements w
of each point on a line parallel'to the z-axis, are approximately the same.

Hence

~

w(x,y,2) = W{x,y) (@)
Therefore, to describe the vertical displacements of the plate, it is
sufficient to use only one plane parallel Eo the x,y-plane as a 'reference"
plane. We choose, the x,y-plane as this plane and place it so that it

coalesces with the "meutral' plane (at which O and ny due to bending

are zero), as shown in Fig. 2., Assumption (7) implies

=
€ =

gz = 0 C))
throughout the plate.

It should be noted that evenif the plane section hypothesis is adopted,
the stress distribution is not linear in the z direction because E = E(z)
and therefore the position of the neutral plane dogs not, in general, coin-
cide with the middle plane, Hence for the problem under consideration the
position of the x,y-reference plane is, at first, not known. Its location
depends upon E(z). Its determination is discussed later,

The usual assumption that a line normal to the x,y-plane remains straight

after deformation, is expressed as

i

u(x,y,2) = 0(x,y) + 2z o ,7y)

)
v(x,y,z) = v(x,y) +z §(x,¥)
where © and v are the respective displacement components of the reference

plane. The additional assumption that this straight line remains perpen-



dicular to the deformed reference plane implies

€ =0
Xz
(10)
€ =0
yz
with (6), (8), and (10), the strain energy expression (4) reduces to
=1 ’
U-'z O__€ + o€ +0__ e av aLn
XX XX yy ¥y XYy Xy
v
The functions ¢ and § are determined by substituting (9) into (10),
noting (5). The obtained expressions are
CP(X,Y) = - W,X
(12)
X, ) =-w,
U (x,y g
Hence, according to (9)
u(x,y,z) = fl(X,Y) -z %’X
vx,y,z) = V@y) -z ¥, (13)
w(x,y,2) = ¥(x,y)
Noting that in the classical bending theory t = 0 and v = 0, it follows
from (5) that
€ = -z W,
XX XX
=- 2%, 14
‘yy ~ T % Ty (14)
€ =- 2z W,
Xy Xy
Because of the assumption that 0, is negligibly small compared to
o oro__, Hooke's law becomes
XX yy
7 (e Y o)
O%x  1- xx €yy
=L <e + v ) (15)
Oyy T T-F \fyy T 7 xx
E

cjxy = 2(1+) exy



Substituting (15) into (11) we obtain
1 ( E > Ev E_ > E 2 )
2 W -7 xx T 2T Sxayy TP Syy T Tae) Sxn/Y 16)
v
Because E = E(z) equ. (16) may be rewritten, noting (l4), as follows

= % jj [ < yy>2'+-2n5<%?xy - W, _— yy)]dxdy @a7)

where the integration extends over the undeformed region of the plate, R,

as shown in Fig. 3 and

h-z h-z
° FE(z
D = j 1o dz = 1-F I 2 E(z)dz
-z -z
o o
(18)
h-z
ozzE.gzz
D = f Ty dz = (1-\))D1
-z
o
The work potential of the outside forces is written down, as usually
done in the classical plate theory, by assuming that the horizontal com-
ponents of the pressure p are negligibly small., Hence
=jj(-)ﬁ7dA-JM°€z ds+jV0€st (19)
1P n o'n n
R B B
where Mg(s) is a prescribed bending moment (per unit length of plate
boundary) acting along the boundary in the positive sense and Vg(s) is a
prescribed vertical line force (per unit length of boundary) acting along
the boundary in the direction of the z-axis,
The kinetic energy of the plate is written down under the assumption
that the load q generates waves of large wave length [15], and therefore
the rotétional kinetic energy is negligible compared to the translational.
Hence
=1 a2 20
2 f mw,5 dA (20)
R



where m = gph is the mass of the plate per unit area.
Substituting expressions (17), (19) and (20) into Hamilton's
Principle (3), and performing the indicated variations, we obtain noting that

8w=0 at t=t; and t=t, (for details see [5] or [21]).

tl

5 Jr (U-W-K)dt =
t
o]

t .
) fl [ [eww,  +ovn,  +n - Qe -
t R
O

- 2 N - ~ ;A . - ~ O_l‘éf\
J [(Dlv w),n qa[(w,xx W,yy) sinQ cosQ w,Xy cosZOﬂ,S + VnJ w ds
B
+ r [D % - D (W, sinffa + %, cosfa - %, sin2a) + Mp]éﬁ, ds}dt =0 (21)
¥ 1 2 XX vy Xy n n
B
when the boundary deflections w(s,t) and the boundary rotations
%,n(s,t) are prescribed, then the boundary integrals in (21) vanish. 1In
this case, equ. (21) is satisfied, according to the fundamental lemma, when
2 A 2 A .
+ + =q -
ﬂ%v w),xx Gav W)’yy_ mw, . =9q-p in R 22)

For h = const, and because E = E(z), the flexural rigidity D, does not

depend upon x and y and equ. (22) may be written as follows:

o i P _ -
D1(5x4 T23EsF ay4> TmyE Sa-p in R 23)

It should be noted that when w is time independent, hence w = W(x,y),

0 and

il

then W
‘tt

p(x,y) = kiv(x,y) (24)
where k is the specific weight of the liquid. When w = w(x,y,t), the pres-
sure p(x,y,t) is determined from the equations of fluid dynamics., For

details of this procedure the reader is referred to Ref. [12].



From the above discussion it follows that when the ice plate with
E(z) is "clamped" along the entire boundary, the formulation for the plate

consists of the differential equation (23), the boundary conditions

w(s,t) =0
on B (25)
w,n(s,t) =0
and the two initial conditions
S(x,y,0) = £(x,y)
(26)

%,t(x,y,O) = g(x,y)

Noting that differential equation (23) is, except for the coefficient D,
identical with equ. (2) and that boundary conditions (25) and initial con-
ditions (26) are the same as those of a homogeneous plate, it follows that
all solutions obtained for the clamped homogeneous’plate may be used for
floating ice plates with E(z), by replacing D = ER® /[12(1-V?)] with

h-z
o
D =——1_2' ‘f ZE(z)dz
1 1 -V
-z
e]
It is obvious that this is also the case for the infinite plate.

When the plate boundary is 'free'", the two boundary conditions which

satisfy (21) are, noting (18),

D [-v2%’+ 1-v) (W, sinfa + W, cosa - %, sin2qa ] = MO(s,t
1 ( )( XX vy Xy ) (S, t) ( )
27)
2 ~ ~ . ~ (o]
- + - - - —\ =
]%[.(V w),n (1-v) [(w,Xx w,yy)31nacosa w,xchSZOQ,SJ(S o Vn(s,t)

where Mﬁ(s,t) and Vg(s,t) are prescribed functions. - A comparison reveals,
that except for the coefficient D, , boundary conditions (27) are identical
with those of the homogeneous plate.

| From the above discussion it follows thét all solutions w obtained in

the literature for the homogeneous plate using equations (1) or (2),are



also valid for the corresponding ice plate with E = E(z) and v = const.

when D is replaced by D .

DETERMINATION OF STRESSES

Substituting (14) into (15), we obtain

= - z E(z ~ ~
Opy = 1——_"\}9)' (o,  tV W,yy)
z E(z A ~
= - W, + Vv w, 28
gy —S;)'l = ( gy xx) (28)

9%y~ " T +v "xy

It follows that, although the plane section hypothesis was adapted,
because E = E(z) the distribution of the stresses o, o, and ¢ is
' xx’ T yy Xy

not linear in z,

Once E(z) and v are given and W(x,y) is obtained from the formulation
discussed before, the stresses throughout the plate may be determined
from (28).

In order to correlate moments and stresses, we note that

h-z h-z h-z
p O o} ‘ o
Mx = J g __zdz M = j o zdz 5 M = f gxyzdz (29)

yy Xy

-7 -Z -z
Q o (o]

In view of the relations in (28) above equations become

Mx = - Dl (w’xx v w’yy)
My = - Dl(w,yy + v w,xx) (30)
MXy = - (1-v) D1 w,xy

From (28) and (30) it follows that

10



M
O = WD, ¢ B

M

Oy = _(ngﬁ z E(z) (31)
MX

Oxy = RENBY z E(z)

1

Note that only when E = const,, do the equations in (31) reduce to the

usual relations for a homogeneous plate

sz Mz MX Z
Cex F/12 Sy TW/Zz P Y% T ¥ /12 (32)

DETERMINATION OF D)

As shown in (18), the flexural rigidity of the floating ice plate
with E = E(z) and v .= const., is
h-z
o}

b, = -1—}—\?' j‘ £ E(z)dz

-2z
(o)

where z, is, as yet, an unknown quantity., Its determination is discussed
in the following.

In formulating the ice plate problem it was assumed that the used
reference plane coalesces with the neutral plane, that is with the plane
at which C s and Oyy are zero throughout the plate. This and the additional
assumption that G(x,y) and V(x,y) are zero imply that the resultant normal

forces are zero, Hence the equations

h-z h-z

o o _
f oxxdz =0 and J‘ o'yydz = 0 (33)
- -z

o o

should be satisfied throughout the plate. Substituting O x and ny from (28)

into the above conditions, we obtain

11



h-2z

° z E(z N N
I I—:SG; (W,Xx + Vv w,yy)dz =0
-~z

o

(34)
h~-z
© . Egz! ~ ~
+ =
Jﬁ 1 - (W, yy Vv W,Xx)dz 0
-z
0
Because %’xx and &’yy do not depend upon z,and V is a constant, both
equafions in (34) are satisfied when
h-z
0
j z E(z)dz = 0 (35)
-z
0

This is the equation for the determination of z s its only unknown.

Thus for a given E(z), the value of z is determined froﬁ condition (35)
and then the flexurél rigidity of the ice plate, D1’ using the first
relation in (18). With D, known, the formulation of an ice plate problem
with E(z) as discussed above, is completed.

To demonstrate the use of above relations, let us assume, that the

distribution of E can be expressed analytically as follows:

E = Eo[l - (1—o:)<% + ;2>n.] (36)

< . . . .
where 0 = @ < 1 and n are determined from a curve fitting analysis,

Graphical representations of expression (36) for ¢ = 0.2 and n = 0.5,1.0,
and 2,0, are shown in Fig. 4.

Substitution of (36) into equ. (35), yields

= h (nt+20) (n+l)

VA =

o = B 2@R2) (ata) G7)
Substitution of (36) into the first equation in (18), yields
D = th'3 n+3 n+ 2 (fg) sota (fg)z (38)
1 1 -V [ 3@m+3) n+2 \h n+1\h ]

Because of (37), D, becomes

12



E h?
D )

_ 4 (n+2)° (0+0) (n+3Q) - 3(n+l) (n+3) (n+2)®
1 12(1-V°) [ : ] (39)

@O+2)° (n+3) (n+)
The first term in (39) is the flexural rigidity of a homogeneous plate with
a constant Young's modulus Eo. Hence the term in the brackets is the re-
duction coefficient due to the variation of E. For example, for = 0,2

and n = 2 (shown in Fig. 4)
th"3

w}
]

and for @ = 0.2 and n = 0.5
E L

D = 0.42 TE?%:GTS (41)

The corresponding bending stress distributions are shown in Fig. 5. It should
be noted that the largest stresses under the neutral plane do not necessarily
occur in the bottom fibers.

Note that D, may also be determined by subjecting a floating ice plate
to a load, by recording at some points the instantaneous deflections or slopes,

and then by comparing them with the corresponding values based on equ. (23).

THE FLOATING ICE BEAM AND THE STRENGTH TEST
To determine the strength of floating ice plates, a number of investi-
gators used as a test sample a floating cantilever beam, cut out from a floafing
ice sheet, which is loaded at the free end until failure, as shown in Fig. 6.
The failure.stress was calculated using the stress formula for the largest

stress of a homogeneous beam (References [22-26])
o, =—T 42)

In this expression M is the bending moment at the broken cross section at
the instant of failure, z is the distance of neutral axis from upper or
lower surface of tested beam, and I is the moment of inertia with respect to
a'horizontal line which passes through and is~normal to the beam axis. 1In

view of the variation of E throughout the cross section, the evaluation of

13



the failure stress using (42) is not permissible, The correct equation is
derived in the following.

It should be noted that after the beam is cut out, also a large part
of the side surfaces of the beam gets in contact with the liquid which is
at about +32°F. This in turn affects a variation of E, and hence of Oy’
also in the y direction. An additional complication is created by the
fact that after the beam is cut out, the variation of E in the y direction
varies with time until a thermal steady state is established in the beam.

This complication can be avoided if the beam is formed by initiating
the cutting at the tip and after the root of the beam is formed, to load
the beam immediately until it fails. In this case it appears reasonable
to assume that E = E(z) only and hence also the bending stresses O x will
not vary with y (see Fig. 6).

The formulatioa of such a beam problem is very similar to the one of
the plate discussed above. 1In view of the usual assumptions

c << O c << O
vy XX Z7Z XX

Gyz =0 ; Exy =0 ;

it follows that

g =

N

[[[o e av
J XX XX

Because of assumption (45)

u=4() - zopE) = ukx) - Z%’x

Setting

14
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(44)

(45)

(46)

7)

(48)

49)



~and noting that Hooke's law reduces, because of (43), to

Oxx E € xx (50)
we obtain
Xp
v=z] 1 82 ax (51)
X
where
1 =” 2 E(z)dA (52)
A

The integration extends over the area of beam cross section A,

From the obtained U, equ. (51), it follows that the differential equa-
tion and boundary conditions for a beam with E(z) are the same as for a corre-
sponding homogeneous beam if‘the flexural rigidity EI is replaced by T, .

According to (50) and (48), the stress

Oy = By = - zE(z) %’xx (53)
Noting that
Mx - Jj OxedA - %’xx Il (54)
A
it follows that
Mx
Oy = E: z E(z) (55)

Hence for the determination of failure stresses from tests on floating
beams, equ; (55) has to be used instead of equ. (42).

It should be noted that the distribution of Oy’ which correspond to
E(z) profiles shown in Fig. 4 are, except for a coefficient, identical to
those shown in Fig. 5 since, also for the Beam problem, z, is determined
from equ. (35). The fact, that for a given bending moment the stresses at
the bottom fibers are smaller than the corresponding stresses at the top
fibers [as well as those obtained from equ. (42)Jmay be the reason for
the observation that '“the strength of the cantilever beams was greater when

the bottom of the ice was put in tension" [257.

15



ADDITIONAL REMARKS
Recently, O. Mahrenholtz [107] discussing the response of floating ice

plates, suggested to include the condition

Jrf %dA = 0 (56)

R
as part of the formulation, Condition (56) implies that an incompressible
liquid is sealed between the plate and a rigid liquid-tight surrounding.
This type of problems were studied for an incompressible liquid in Ref. [7]
and for a compressible liquid in Ref. [8]. The obtained results indicate
that when analyzing the response of an ice plate which covers a river or
lake, there is no justification to impose condition (56).

For those cases when condition (56) has to be imposed, if may be
incorporated in the above analysis by means of the Lagrange multiplier method,
The results obtained in the present paper suggest that a consistent

formulation has to be also derived for the analysis of viscoelastic defor-
mations of floating ice sheets, which takes into consideration the variation
of the material parameters with plate depth. This is necessary, in particu-
lar, when stress dist;ibutions are studied, as done by J.L. Cutcliffe,

W.D. Kingery and R.L. Coble [27]. The above remark also applies to the

paper by H.A, Hobbs, J.L. Cutcliffe and W.D. Kingery [28]. 1In connection with
this paper, it should be noted that if the shapes of two deflection surfaces
are approximately the same (in the sense of comparing two graphs), then

this does not imply that the stresses will also be approximately the same.

16
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